Correct Answer: C
Explanation:
Let a be an positive odd integer, and let b = 4
By, using Euclid's division lemma,
a = 4q + r, where r is an integer such that, 0 ≤ r < 4
So, only four cases are possible
a = 4q or
a = 4q + 1 or
a = 4q + 2 or
a = 4q + 3
But 4q and 4q + 2 are divisible by 2, therefore these cases are not possible, as a is an odd integer.
Therefore,
a = 4q + 1 or a = 4q + 3.